Optical fibre sensing of endotracheal tube cuff contact pressure and trachea mucosa perfusion

R. Correia¹, F. U. Hernandez¹, S. Korposh¹, S.P. Morgan¹, B.R. Hayes-Gill¹, S.W. James², D. Evans³, R Sinha³, and A. Norris³

¹ Advanced Optics Group, The University of Nottingham. ² Engineering Photonics, Cranfield University. ³ Dept. of Anaesthesia, Nottingham University Hospital.

1 - Introduction

- **Endotracheal tube (ETT):** disposable medical device used to deliver humidified gas into the lungs during mechanical ventilation.
 - ETT’s cuff sits in the trachea and has two functions: 1) to provide sealing and avoid leakage of the gas delivered around the tube; and 2) to act as a physical barrier to prevent aspiration of secretions from the airways to the lungs.
 - Traditionally, clinicians measured the intra-cuff pressure as a surrogate of contact pressure. Intra-cuff pressures > 4.8 kPa impede capillary blood flow and the mucosal lining of the trachea may be damaged (long term stenosis). Intra-cuff pressures < 2.5 kPa may increase the risk of aspiration of mucosal secretions (causing a higher incidence of ventilator associated pneumonia) [1-3].

2 - Sensors working principle

![Diagram showing the principles of FBG sensor and PPG signal](image)

3 - Results

![Graphs showing pressure changes inside and outside the trachea](image)

REFERENCES

The research was funded by the National Institute for Health Research (NIHR) II-LA-0813-20008 programme. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.